Can you buy compound 1080

Can you buy compound 1080 DEFAULT

Sodium fluoroacetate

Ben Valsler

This week Georgia Mills examines the controversial killer, sodium fluoroacetate, aka 1080.

Georgia Mills

Sodium fluoroacetate is a synthetic salt, with a taste apparently similar to sodium chloride, but you definitely wouldn’t want this on your fish and chips.

Despite looking inoffensive – a pale white or colourless fluffy powder – and having no detectable odour, sodium fluoroacetate can be deadly to most animals, making it a popular poison.

Warning sign for 1080 poison in Western Australia

Also known by the name 1080, it is used in many countries as a method for killing pests and invasive species.

It’s very similar to the naturally occurring compound potassium fluoroactetate. Several species of plant in a genus called Gastrolobium make this to try and dissuade herbivores from eating them, and the synthetic version was first made in the 1940s. It was created by treating sodium chloroacetate with potassium fluoride and it gets its brand name from the catalogue number of the poison: 1080. That’s a lot of poisons.

Gastrolobium polystachyum, a poisonous wildflower endemic to Western Australia

It is toxic to aerobic organisms, i.e. the chumps like you and me that need oxygen to survive. About 2–10 mg/kg will finish off your average human, while dogs, cats and pigs are more susceptible. It works by interrupting vital cell processes.

The molecule looks, to our cells, very similar to acetate, an important part of cell metabolism, and so they unwittingly convert this lookalike into something called fluorocitrate. This prevents an important enzyme – aconitate hydrase – from doing its thing, which has several knock-on effects. There’s a build-up of citrate – associated with impaired brain function; a reduction in calcium – which is required for heart and nerve function, and cells struggle to produce enough energy to function properly.

This can result in fitting, nausea, pain and eventually coma and death – there’s currently no effective antidote. It is by no means a quick, painless death for the animals who eat it.

A helicopter carrying a load of 1080 pellets in a monsoon bucket, in Greymouth, New Zealand

Most of the planet’s annual output of 1080 is used by just one country: New Zealand. The poison is targeted at invasive mammals such as possums, rats and stoats to try and protect the native wildlife.

Despite numerous independent safety and efficacy studies, 1080 remains highly controversial. The poison is put into bait pellets, which are air dropped en masse throughout target environments. There are fears that such a toxic compound could easily enter the food chain or water supply.

1080 does sometimes kill the wrong animals – curious parrots called Kea like to investigate new and interesting items, and are an unfortunate casualty of the war on invasive species, alongside the occasional dog. Some animals, like fish and reptiles, are much more resistant to the poison due to differences in metabolic rates and their ability to convert fluoroacetate into the disruptive fluorocitrate.

Kea parrot in New Zealand

But could it enter the water supply? Sodium fluoroacetate is water soluble, so can be dispersed through rain and groundwater. Fortunately, aquatic plants and microorganisms can break down 1080 into harmless byproducts. Similarly, any poison that leaches in the soil is likely to be broken down by bacteria and fungi.

As for worries about eating contaminated meat, the compound begins to decompose over 100 degrees celsius so cooking should handle most of it. Taking toxicity levels found in poisoned deer muscle, New Zealand environmental reports have claimed that an adult human would need to eat 100 kilograms of poisoned deer in one sitting for the toxin to be deadly – an ambitious meal for even the hungriest carnivore. While even low levels of poison may sound unpalatable, it’s worth mentioning that tiny amounts of fluoroacetate have been repeatedly detected in tea leaves, so long-term micro doses are unlikely to be dangerous, and given my 8-cup-a-day habit – if they are, I’ll let you know.

Anti 1080 sentiment remains high in some areas: it’s not risk-free and does not kill humanely. There’s also plenty of fake news to boot, even implicating 1080 in somehow causing roadkill. One famous incident in New Zealand involved a threat to poison infant formula with 1080 unless the government stopped using it. Luckily, two reliable test methods were quickly developed for the compound, and the blackmailer was put behind bars. Far from being an environmental activist, he benefitted financially from the sales of a rival brand of poison.

While the full extent of sodium fluoroacetate’s impact on the environment isn’t totally understood, safety measures and precautions are being used to try and mitigate potential damage, such as water monitoring, public notices and bait designed to look as unappealing as possible to the curious kea. For now at least, the people of New Zealand are taking the risk, because if they don’t do something, iconic birds like the kiwi will disappear forever.

Ben Valsler

That was Georgia Mills with the pest control salt, 1080. Next week, scents and sensibility, with Louise Crane.

Louise Crane

Its name comes from the Greek, hedone, which roughly translates as hedonism or pleasure and it is the only perfume compound that has been shown to stimulate a sexual response in humans.

Ben Valsler

Join Louise next week. Until then, if you can think of any compounds you would like to know more about, you can email [email protected] or tweet @chemistryworld. I’m Ben Valsler, thanks for joining me.

Additional information





Sodium fluoroacetate

Wiki letter w.svg

This article is missing information about non-native resistance (PMID 28674607). Please expand the article to include this information. Further details may exist on the talk page.(December 2020)


Multiple sodium fluoroacetate molecules arranged in a crystal. Fluorines are shown in yellow, sodium in purple, oxygen in red.

IUPAC name

Sodium 2-fluoroacetate

Other names

1080; SFA; Sodium monofluoroacetate; Compound 1080


CAS Number

  • 62-74-8 checkY

3D model (JSmol)

ECHA InfoCard100.000.499Edit this at Wikidata


RTECS number

CompTox Dashboard(EPA)


  • InChI=1S/C2H3FO2.Na/c3-1-2(4)5;/h1H2,(H,4,5);/q;+1/p-1 checkY
  • InChI=1/C2H3FO2.Na/c3-1-2(4)5;/h1H2,(H,4,5);/q;+1/p-1



Chemical formula

Molar mass100.0 g/mol
Appearance Fluffy, colorless-to-white powder
Melting point 200 °C (392 °F; 473 K)
Boiling pointDecomposes

Solubility in water

Main hazardsToxic, Flammable
R/S statement(outdated)R26R27R28
Flash point?
Lethal dose or concentration (LD, LC):

LD50 (median dose)

1.7 mg/kg (rat, oral)
0.34 mg/kg (rabbit, oral)
0.1 mg/kg (rat, oral)
0.3 mg/kg (guinea pig, oral)
0.1 mg/kg (mouse, oral)[2]
NIOSH (US health exposure limits):

PEL (Permissible)

TWA 0.05 mg/m3 [skin][1]

REL (Recommended)

TWA 0.05 mg/m3 ST 0.15 mg/m3 [skin][1]

IDLH (Immediate danger)

2.5 mg/m3[1]

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

☒N verify (what is checkY☒N ?)
Infobox references

Chemical compound

Sodium fluoroacetate is an organofluorinechemical compound with the formula FCH2CO2Na. This colourless salt has a taste similar to that of sodium chloride and is used as a metabolic poison. Both sodium and potassium salts are derivatives of fluoroacetic acid.

History and production[edit]

The effectiveness of sodium fluoroacetate as a rodenticide was reported in 1942.[3] The name "1080" refers to the catalogue number of the poison, which became its brand name.

The salt is synthesized by treating sodium chloroacetate with potassium fluoride.[5]

Natural occurrence[edit]

Fluoroacetate occurs naturally in at least 40 plants in Australia, Brazil, and Africa. It is one of only five known organic fluorine-containing natural products.[6]

Fluoroacetate occurrence in Gastrolobium species[edit]

Gastrolobium is a genus of flowering plants in the family Fabaceae. This genus consists of over 100 species, and all but two are native to the southwest region of Western Australia, where they are known as "poison peas". Gastrolobium growing in southwestern Australia concentrate fluoroacetate from low-fluoride soils.[7] Brush-tailed possums, bush rats, and western grey kangaroos native to this region are capable of safely eating plants containing fluoroacetate, but livestock and introduced species from elsewhere in Australia are highly susceptible to the poison,[8] as are species introduced from outside Australia, such as the red fox. The fact that many Gastrolobium species also have high secondary toxicity to non-native carnivores is thought to have limited the ability of cats to establish populations in locations where the plants form a major part of the understorey vegetation.[9]

The presence of Gastrolobium species in Western Australia has often forced farmers to 'scalp' their land, that is, remove the top soil and any poison pea seed which it may contain, and replace it with a new poison pea-free top soil sourced from elsewhere in which to sow crops. Similarly, after bushfires in north-western Queensland, cattlemen have to move livestock before the poisonous Gastrolobium grandiflorum emerges from the ashes.[10]

The related compound potassium fluoroacetate occurs naturally in at least 40 plant species in Australia, New Zealand,[11]Brazil, and Africa. It was first identified in Dichapetalum cymosum, commonly known as gifblaar or poison leaf, by Marais in 1944.[12][13] As early as 1904, colonists in Sierra Leone used extracts of Chailletia toxicaria, which also contains fluoroacetic acid or its salts, to poison rats.[14][15][16] Several native Australian plant genera contain the toxin, including Gastrolobium, Gompholobium, Oxylobium, Nemcia, and Acacia. New Zealand's native Puha contains 1080 in very low concentrations.[17]


Sodium fluoroacetate is toxic to all obligate aerobic organisms, and highly toxic to mammals and insects. The oral dose of sodium fluoroacetate sufficient to be lethal in humans is 2–10 mg/kg.[18]

The toxicity varies with species. The New Zealand Food Safety Authority established lethal doses for a number of species. Dogs, cats, and pigs appear to be most susceptible to poisoning.[19]

The enzymefluoroacetate dehalogenase has been discovered in a soil bacterium, which can detoxify fluoroacetate in the surrounding medium.[citation needed]

Mechanism of action[edit]

Fluoroacetate is structurally similar to acetate, which has a pivotal role in cellular metabolism. This similarity is the basis of the toxicity of fluoroacetate. Two related mechanisms for its toxicity have been discussed, with both beginning with the conversion of fluoroacetate to 2-fluorocitrate. 2-Fluorocitrate arises by condensation with oxaloacetate with fluoroacetyl coenzyme A, catalyzed by citrate synthase. Fluorocitrate binds very tightly to aconitase, thereby halting the citric acid cycle. This inhibition results in an accumulation of citrate in the blood. Citrate and fluorocitrate are allosteric inhibitors of phosphofructokinase-1 (PFK-1), a key enzyme in glycolysis. When PFK-1 is inhibited, cells are no longer able to metabolize carbohydrates, depriving them of energy.[20] Alternatively, fluorocitrate interferes with citrate transport in the mitochondria.[21]


In humans, the symptoms of poisoning normally appear between 30 minutes and three hours after exposure. Initial symptoms typically include nausea, vomiting, and abdominal pain; sweating, confusion, and agitation follow. In significant poisoning, cardiac abnormalities including tachycardia or bradycardia, hypotension, and ECG changes develop. Neurological effects include muscle twitching and seizures; consciousness becomes progressively impaired after a few hours leading to coma. Death is normally due to ventricular arrhythmias, progressive hypotension unresponsive to treatment, and aspiration pneumonia.

Symptoms in domestic animals vary: dogs tend to show nervous system signs such as convulsions, vocalization, and uncontrollable running, while large herbivores such as cattle and sheep more predominantly show cardiac signs.[22]

Sub-lethal doses of sodium fluoroacetate may cause damage to tissues with high energy needs — in particular, the brain, gonads, heart, lungs, and fetus. Sub-lethal doses are typically completely metabolised and excreted within four days.[23]


Effective antidotes are unknown. Research in monkeys has shown that the use of glyceryl monoacetate can prevent problems if given after ingestion of sodium fluoroacetate, and this therapy has been tested in domestic animals with some positive results. In theory, glyceryl monoacetate supplies acetate ions to allow continuation of cellular respiration which the sodium fluoroacetate had disrupted.[24]

Experiments of N. V. Goncharov and co-workers resulted in development of a successful therapeutic complex, containing a phenothiazine compound, a dioic acid compound, and a pharmaceutically acceptable carrier. In another aspect the pharmaceutical composition can include a phenothiazine compound, a nitroester compound, ethanol, and a pharmaceutically acceptable carrier.[25]

In clinical cases, use of muscle relaxants, anti-convulsants, mechanical ventilation, and other supportive measures may all be required. Few animals or people have been treated successfully after significant sodium fluoroacetate ingestions.[26]

In one study, sheep gut bacteria were genetically engineered to contain the fluoroacetate dehalogenase enzyme that inactivates sodium fluoroacetate. The bacteria were administered to sheep, who then showed reduced signs of toxicity after sodium fluoroacetate ingestion.[27]

Pesticide use[edit]

Common brushtail possum, an invasive pest in New Zealand whose population is controlled with sodium fluoroacetate

Sodium fluoroacetate is used as a pesticide, especially for mammalianpest species. Farmers and graziers use the poison to protect pastures and crops from various herbivorous mammals. In New Zealand and Australia it is also used to control invasive non-native mammals that prey on or compete with native wildlife and vegetation.


In Australia, sodium fluoroacetate was first used in rabbit control programmes in the early 1950s, where it is regarded as having "a long history of proven effectiveness and safety".[28] It is seen as a critical component of the integrated pest-control programmes for rabbits, foxes, wild dogs, and feral pigs. Since 1994, broad-scale fox control using 1080 meat baits in Western Australia has significantly improved the population numbers of several native species and led, for the first time, to three species of mammals being taken off the state's endangered species list. In Australia, minor direct mortality of native animal populations from 1080 baits is regarded as acceptable, compared to the predatory and competitive effects of those introduced species being managed using 1080.[29]

Western Shield is a project to boost populations of endangered mammals in south-west Australia conducted by the Department of Environment and Conservation of Western Australia. The project entails distributing fluoroacetate-baited meat from the air to kill predators. Wild dogs and foxes will readily eat the baited meat. Cats pose a greater difficulty as they are generally not interested in scavenging. However, an Australian RSPCA-commissioned study criticized 1080, calling it an inhumane killer.[30] Some Western Australian herbivores (notably, the local subspecies of the tammar wallaby, Macropus eugenii derbianus, but not the subspecies M. e. eugenii of southern Australia and M. e. decres on Kangaroo Island) have, by natural selection, developed partial immunity to the effects of fluoroacetate,[31] so that its use as a poison may reduce collateral damage to some native herbivores specific to that area.

In 2011, over 3,750 toxic baits containing 3 ml of 1080 were laid across 520 properties over 48,000 hectares between the Tasmanian settlements of Southport and Hobart as part of an ongoing attempt at the world's biggest invasive animal eradication operation – the eradication of red foxes[32] from the island state. The baits were spread at the rate of one per 10 hectares and were buried, to mitigate the risk to non-target wildlife species like Tasmanian devils.[33] Native animals are also targeted with 1080.[34] During May 2005 up to 200,000 Bennett's wallabies on King Island were intentionally killed in one of the largest coordinated 1080 poisonings seen in Tasmania.[35][36]

In 2016 PAPP (para-amino propiophenone) became available for use, which the RSPCA has endorsed as a more humane alternative to 1080, due in part to its ability to kill faster, as well as having an antidote, which 1080 does not.[37] However, as of July 2018[update], 1080 was still being used in attempts to reduce feral cat populations.[38]

New Zealand[edit]

Sign warning of poisonous sodium fluoroacetate baits on the West Coast of New Zealand

Main article: 1080 usage in New Zealand

Worldwide, New Zealand is the largest user of sodium fluoroacetate.[18] This high usage is attributable to the fact that, apart from two species of bat,[39] New Zealand has no native land mammals, and some of those that have been introduced have had devastating effects on vegetation and native species. 1080 is used to control possums, rats, stoats, deer, and rabbits.[40] The largest users, despite some vehement opposition,[41] are OSPRI New Zealand and the Department of Conservation.[42]

United States[edit]

Sodium fluoroacetate is used in the United States to kill coyotes.[43] Prior to 1972 when the EPA cancelled all uses, sodium fluoroacetate was used much more widely as a cheap[44] predacide and rodenticide; in 1985, the restricted-use "toxic collar" approval was finalized.[45]

Other countries[edit]

1080 is used as a rodenticide in Mexico, Japan, Korea, and Israel.[46]

Environmental impacts[edit]


Because 1080 is highly water-soluble, it will be dispersed and diluted in the environment by rain, stream water, and ground water. Sodium fluoroacetate at the concentrations found in the environment after standard baiting operations will break down in natural water containing living organisms, such as aquatic plants or micro-organisms. Water-monitoring surveys, conducted during the 1990s, have confirmed that significant contamination of waterways following aerial application of 1080 bait is possible, but unlikely.[47] Research by NIWA showed that 1080 deliberately placed in small streams for testing was undetectable at the placement site after 8 hours, as it washed downstream. Testing was not done downstream.[48]

In New Zealand, surface water is routinely monitored after aerial application of 1080, and water samples are collected immediately after application, when there is the highest possibility of detecting contamination.[49] Of 2442 water samples tested in New Zealand between 1990 and 2010, following aerial 1080 operations: 96.5% had no detectable 1080 at all and, of all the samples, only six were equal to, or above the Ministry of Health level for drinking water, and none of these came from drinking water supplies.[50] Of 592 samples taken from human or stock drinking supplies, only four contained detectable 1080 residues at 0.1ppb (1 sample) and 0.2 ppb (3 samples) – all well below the Ministry of Health level of 2 ppb.

In an experiment funded by the Animal Health Board and conducted by NIWA simulating the effects of rainfall on 1080 on a steep soil-covered hillside a few meters from a stream, it was found that 99.9% of the water containing 1080 leached straight into the soil (See 4.3 of[51]) and did not flow over the ground to the stream as had been expected. The experiment also measured contamination of soil water, which was described as the water carried through the soil underground at short horizontal distances (0.5-3m), downhill toward the stream. The experiment did not measure contamination of deeper soil and ground water immediately beneath the site of application.[51]


The fate of 1080 in the soil has been established by research defining the degradation of naturally occurring fluoroacetate (Oliver, 1977). Sodium fluoroacetate is water-soluble, and residues from uneaten baits leach into the soil where they are degraded to non-toxic metabolites by soil microorganisms, including bacteria (Pseudomonas) and the common soil fungus (Fusarium solani) (David and Gardiner, 1966; Bong, Cole and Walker, 1979; Walker and Bong, 1981).[52]


Although it is now infrequent, individual aerial 1080 operations can still sometimes affect local bird populations if not carried out with sufficient care. In New Zealand, individuals from 19 species of native birds and 13 species of introduced birds have been found dead after aerial 1080 drops. Most of these recorded bird deaths were associated with only four operations in the 1970s that used poor-quality carrot baits with many small fragments.[53] On the other hand, many native New Zealand bird populations have been successfully protected by reducing predator numbers through aerial 1080 operations. Kokako, blue duck,[54]New Zealand pigeon,[55]kiwi,[56]kaka,[57]New Zealand falcon,[58]tomtit,[59]South Island robin,[60]North Island robin,[61] New Zealand parakeets (kakariki), and yellowhead[62] have all responded well to pest control programmes using aerial 1080 operations, with increased chick and adult survival, and increases in population size. In contrast, seven of 38 tagged kea, the endemic alpine parrot, were killed[63] during an aerial possum control operation in Okarito Forest conducted by DOC and AHB in August 2011. Because of their omnivorous feeding habits and inquisitive behaviour, kea are known to be particularly susceptible to 1080 poison baits, as well as other environmental poisons like the zinc and lead used in the flashings of backcountry huts and farm buildings.[64] Recent research found that proximity to human-occupied sites where kea scrounge human food is inversely related to survival; the odds of survival increased by a factor of 6.9 for remote kea compared to those that lived near scrounging sites. High survival in remote areas is explained by innate neophobia and a short field-life of prefeed baits, which together preclude acceptance of poison baits as familiar food.[65]

Reptiles and amphibians[edit]

Reptiles and amphibians are susceptible to 1080, although much less sensitive than mammals.[66] Amphibian and reptile species that have been tested in Australia are generally more tolerant to 1080 poison than are most other animals.[67] McIlroy (1992) calculated that even if lizards fed entirely on insects or other animals poisoned with 1080, they could never ingest enough poison to receive a lethal dose.[68] Laboratory trials in New Zealand simulating worst-case scenarios indicate that both Leiopelma archeyi (Archey's frog) and L. hochstetteri (Hochstetter's frog) can absorb 1080 from contaminated water, substrate, or prey. The chance of this occurring in the wild is ameliorated by a variety of factors, including frog ecology. Captive maintenance and contamination problems rendered parts of this study inconclusive. Further population monitoring is recommended to provide more conclusive evidence than provided by this single study.[69] In New Zealand, the secondary poisoning of feral cats and stoats following 1080 operations is likely to have a positive effect on the recovery of native skink and gecko populations.[70] Killing rabbits[71] and possums,[72] which compete for food with skinks and geckos, may also have benefits.


Fish generally have very low sensitivity to 1080. Toxicity tests have been conducted in the US on bluegill sunfish, rainbow trout, and the freshwater invertebrate Daphnia magna. Tests at different 1080 concentrations on sunfish (for four days) and Daphnia (two days) showed that 1080 is "practically non-toxic" (a US EPA classification) to both these species. Rainbow trout were also tested over four days at four concentrations ranging from 39 to 170 mg 1080 per litre. From these results an LC50 (the concentration of 1080 per litre of water which theoretically kills 50% of the test fish) can be calculated. The LC50 for rainbow trout was calculated to be 54 mg 1080/litre – far in excess of any known concentration of 1080 found in water samples following 1080 aerial operations. Thus 1080 is unlikely to cause mortality in freshwater fish.[73]


Insects are susceptible to 1080 poisoning. Some field trials in New Zealand have shown that insect numbers can be temporarily reduced within 20 cm of toxic baits, but numbers return to normal levels within six days of the bait being removed.[74] Other trials have found no evidence that insect communities are negatively affected.[75] Another New Zealand study showed that wētā, native ants, and freshwater crayfish excrete 1080 within one to two weeks.[76] There is also evidence that 1080 aerial operations in New Zealand can benefit invertebrate species.[77] Both possums and rats are a serious threat to endemic invertebrates in New Zealand, where around 90 per cent of spiders and insects are endemic and have evolved without predatory mammals.[78] In a study on the diet of brushtail possums, 47.5 per cent of possum faeces examined between January 1979 and June 1983 contained invertebrates, mostly insects.[79] One possum can eat up to 60 endangered native land snails (Powelliphanta spp.) in one night.[80]

See also[edit]


  1. ^ abcdNIOSH Pocket Guide to Chemical Hazards. "#0564". National Institute for Occupational Safety and Health (NIOSH).
  2. ^"Sodium fluoroacetate". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  3. ^Kalmbach, E. R. (1945). "Ten-Eighty, a War-Produced Rodenticide". Science. 102 (2644): 232–233. Bibcode:1945Sci...102..232K. doi:10.1126/science.102.2644.232. PMID 17778513.
  4. ^Aigueperse J, Mollard P, Devilliers D, Chemla M, Faron R, Romano R, Cuer JP. "Fluorine Compounds, Inorganic". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a11_307.
  5. ^K.K. Jason Chan; David O'Hagan (2012). "The Rare Fluorinated Natural Products and Biotechnological Prospects for Fluorine Enzymology". Methods in Enzymology. 516: 219–235. doi:10.1016/B978-0-12-394291-3.00003-4. ISBN . PMID 23034231.
  6. ^Lee, J. (1998). "Deadly plants face threat of extinction". ANU Reporter. Australian National University. 29 (6). Retrieved 2012-08-07.[dead link]
  7. ^McKenzie, R. (1997). "Australian Native Poisonous Plants". Australian Plants Online. Australian Native Plants Society. Retrieved 2012-08-07.
  8. ^Short, J.; Atkins, L.; Turner, B. (2005). Diagnosis of Mammal Decline in Western Australia, with Particular Emphasis on the Possible Role of Feral Cats and Poison Peas(PDF). Australia: Wildlife Research and Management Pty. Retrieved 2011-09-26.
  9. ^Noble group
  10. ^Ogilvie, S.C; Miller, A. "Uptake of 1080 by Watercress and Puha - Culturally-Important Plants Used for Food". Lincoln University Management Report. 49.
  11. ^Marais, J. C. S. (1943). "The isolation of the toxic principle "K cymonate" from "Gifblaar", Dichapetalum cymosum". Onderstepoort Journal of Veterinary Science and Animal Industry. 18: 203.
  12. ^Marais, J. C. S. (1944). "Monofluoroacetic acid, the toxic principle of "gifblaar" Dichapetalum cymosum". Onderstepoort Journal of Veterinary Science and Animal Industry. 20: 67.
  13. ^Renner (1904). "Chemical and Physiological Examination of the Fruit of Chailletia Toxicaria". Jour African Soc.: 109.
  14. ^Power, F. B.; Tutin, F. (1906). "Chemical and Physiological Examination of the Fruit of Chailletia toxicaria". Journal of the American Chemical Society. 28 (9): 1170–1183. doi:10.1021/ja01975a007.
  15. ^Vartiainen, T.; Kauranen, P. (1984). "The determination of traces of fluoroacetic acid by extractive alkylation, pentafluorobenzylation and capillary gas chromatography-mass spectrometry". Analytica Chimica Acta. 157 (1): 91–97. doi:10.1016/S0003-2670(00)83609-0.
  16. ^"Sodium fluoroacetate (compound 1080) uptake by Puha, a culturally-important food plant"(PDF). Archived from the original(PDF) on 21 January 2018.
  17. ^ abBeasley, Michael (August 2002). "Guidelines for the Safe Use of Sodium Fluoroacetate (1080)". New Zealand Occupational Safety & Health Service. Archived from the original(PDF) on 2015-10-17. Retrieved 2015-10-31.
  18. ^"Controlled Pesticides: Sodium Fluoroacetate (1080) in Pest Control"(PDF). Agricultural Compounds and Veterinary Medicines Group. Retrieved 2007-12-17.
  19. ^
  20. ^Timperley, Christopher M. (2000). "Highly-toxic fluorine compounds". Fluorine Chemistry at the Millennium. pp. 499–538. doi:10.1016/B978-008043405-6/50040-2. ISBN .
  21. ^Gupta, R. (2007). Veterinary Toxicology: Basic and Clinical Principles. Amsterdam: Elsevier. p. 556. ISBN . Retrieved 2012-08-08.
  22. ^Eason, C. T.; Frampton, C. M.; Henderson, R.; Thomas, M. D.; Morgan, D. R. (1993). "Sodium monofluoroacetate and alternative toxins for possum control". New Zealand Journal of Zoology. 20 (3): 329–334. doi:10.1080/03014223.1993.10420354. ISSN 0301-4223. Retrieved 2010-07-02.
  23. ^Brent, J. (2005). Critical Care Toxicology. St. Louis: Mosby. p. 970. ISBN . Retrieved 2010-07-28.
  24. ^Goncharov N.V., Kuznetsov A.V., Glashkina L.M., Radilov A.S. Compositions and Methods for Treating Intoxications. United States Patent Application 20100249116, publication date 09/30/2010; see also: Goncharov N.V., Jenkins R.O., Radilov A.S. Toxicology of fluoroacetate: a review, with possible directions for therapy research // J.Appl.Toxicol.(2006)26:148-161
  25. ^Rippe, J. M.; Irwin, R. S. (2008). Irwin and Rippe's Intensive Care Medicine. Philadelphia: Wolters Kluwer Health / Lippincott Williams & Wilkins. pp. 1666–1667. ISBN . Retrieved 2010-07-28.
  26. ^Gregg, Keith; Hamdorf, Brenton; Henderson, Kerrin; Kopecny, Jan; Wong, Cheryl (September 1998). "Genetically Modified Ruminal Bacteria Protect Sheep from Fluoroacetate Poisoning". Applied and Environmental Microbiology. 64 (9): 3496–3498. doi:10.1128/AEM.64.9.3496-3498.1998. ISSN 1098-5336. PMC 106753. PMID 9726903.
  27. ^"1080 Summary information". Miscellaneous Publication No. 011/2002. 2002.
  28. ^"The use of 1080 for pest control – 4.1 Key facts". NZ Department of Conservation.
  29. ^Speechley, Jane (15 November 2007). "1080 is not a humane poison: International journal publishes RSPCA paper". RSPCA. Archived from the original on 2007-11-18. Retrieved 2007-12-17.
  30. ^L. E. Twigg and D. R. King, OIKOS 61, 412 (1991)
  31. ^Townsend, Ian (4 May 2014). "The great Tasmanian fox hunt". Australian Broadcasting Commission. Retrieved 2016-04-06.
  32. ^"Full-on blitz for foxes". The Mercury (Tasmania). 23 September 2011. Retrieved 2011-08-26.
  33. ^Paull, John (2011) Environmental Management in Tasmania: Better off Dead? In Godfrey Baldacchino & Daniel Niles (Eds) Island Futures: Conservation and Development Across the Asia-Pacific Region (Chapter 12: 153-168) Global Environment Series, Tokyo: Springer.
  34. ^"How a wallaby and 1080 poison don't mix!". Archived from the original on 2012-04-25. Retrieved 2011-10-06.CS1 maint: unfit URL (link)
  35. ^"The World Today – Animal welfare groups angered by King Island wallaby cull".
  36. ^Landline By Prue Adams (2016-06-11). "Wild dogs: First new bait released in 50 years to tackle Australia's rural pest - ABC News (Australian Broadcasting Corporation)". Retrieved 2017-04-16.
  37. ^"Australia Is Deadly Serious About Killing Millions of Cats". The New York Times. 2019-04-25. Retrieved 2019-04-26.
  38. ^"Bats/pekapeka". Department of Conservation. Retrieved 23 February 2016.
  39. ^Green, W. (July 2004). "The use of 1080 for pest control"(PDF). The Animal Health Board and The Department of Conservation. Retrieved 2008-12-16.
  40. ^Harper, Paul; Neems, Jeff (2009-09-19). "Protesters stop Coromandel 1080 drop". Fairfax New Zealand Ltd. Waikato Times. Retrieved 12 February 2015.
  41. ^Kolbert, Elizabeth (23 December 2014). "The Big Kill: New Zealand's crusade to rid itself of mammals". The New Yorker. Retrieved 23 December 2014.
  42. ^"Wildlife Services Factsheet May 2010: The Livestock Protection Collar"(PDF). U.S. Department of Agriculture's (USDA) Animal and Plant Health Inspection Service (APHIS). Retrieved 2010-07-30.
  43. ^Leydet, F. (1988). The coyote: defiant songdog of the West. Norman: University of Oklahoma Press. p. 110. ISBN . Retrieved 2010-07-30.
  44. ^"Sodium Fluoroacetate: Reregistration Eligibility Decision (RED) Fact Sheet"(PDF). Environmental Protection Agency. Retrieved 2010-07-30.
  45. ^"Methods of pest control: Animal pests". 2006-08-01. Retrieved 2017-04-18.
  46. ^Eason, C. T. (2002). Technical Review of Sodium Monofluoroacetate (1080) Toxicology. ISBN . Archived from the original on 2011-10-08. Retrieved 2011-09-30.
  47. ^Suren, A.; Lambert, P. (2006). "Do toxic baits containing sodium fluroacetate (1080) affect fish and invertebrate communities when they fall into streams?". New Zealand Journal of Marine and Freshwater Research. 40 (4): 531–546. doi:10.1080/00288330.2006.9517443. S2CID 85244853.
  48. ^Eason, C. T.; Temple, W. (2002). Water sampling for sodium fluoroacetate (1080) – how much is enough?(PDF). The NZWWA Journal. 32. ISBN . Archived from the original(PDF) on 2012-04-02. Retrieved 2011-09-30.
  49. ^Unpublished data, Landcare Research New Zealand Ltd
  50. ^ ab"Investigations of 1080 leaching and transport in the environment"(PDF). Archived from the original(PDF) on 2015-01-27. Retrieved 2017-04-18.
  51. ^Eason, C. T.; Wright, G. R.; Fitzgerald, H. (1992). "Sodium Monofluoroacetate (1080) Water-Residue Analysis after Large-Scale Possum Control"(PDF). New Zealand Journal of Ecology. 16 (1): 47–49.
  52. ^"Evaluating the use of 1080 – Predators, poisons, and silent forests"(PDF). New Zealand: Parliamentary Commissioner for the Environment. 2011.
  53. ^"Tongariro Forest whio". New Zealand: Department of Conservation.
  54. ^Innes, J.; Nugent, G.; Prime, K.; Spurr, E. B. (2004). "Responses of kukupa (Hemiphaga novaeseelandiae) and other birds to mammal pest control at Motatau, Northland"(PDF). New Zealand Journal of Ecology. 28 (1): 73–81.
  55. ^"Kiwi: New Zealand native land birds". 2012-05-03. Archived from the original on 2015-02-28. Retrieved 2017-04-18.
  56. ^MacKay, Scot (27 April 2011). "1080 drop boosts Waitutu kaka: DOC". The Southland Times. Retrieved 12 November 2011.
  57. ^Seaton, R.; Holland, J. D.; Minot, E. O.; Springett, B. P. (2009). "Breeding Success of New Zealand Falcons (Falco novaeseelandiae) in a Pine Plantation"(PDF). New Zealand Journal of Ecology. 33 (1): 32–39.
  58. ^Powlesland, R. G.; Knegtmans, J. W.; Styche, A. (2000). "Mortality of North Island tomtits (Petroica macrocephala toitoi) caused by aerial 1080 possum control operations, 1997–98, Pureora Forest Park"(PDF). New Zealand Journal of Ecology. 24 (2): 161–168.
  59. ^Schadewinkel, R. B.; Jamieson, I. G. "The effect of aerial application of 1080 cereal baits for possum control on South Island Robin (Petroica australis) in the Silver Peaks, Dunedin"(PDF). New Zealand: TBFree. Archived from the original(PDF) on 2013-12-02.
  60. ^Powlesland, R. G.; Knegtmans, J. W.; Marshall, I. S. J. (1999). "Costs and Benefits of Aerial 1080 Possum Control Operation Using Carrot Baits to North Island Robins (Petroica australis longipes), Pureora Forest Park"(PDF). New Zealand Journal of Ecology. 23 (2): 149–159.
  61. ^"Land conservation publications". 2006-08-15. Retrieved 2017-04-18.
  62. ^"Seven keas dead in wake of 1080 work". Otago Daily Times. 12 September 2011. Retrieved 12 November 2011.
  63. ^"Wildlife health: Our work". 2009-09-14. Retrieved 2017-04-18.
  64. ^Kemp, Joshua R. (2019). "Kea survival during aerial poisoning for rat and possum control". New Zealand Journal of Ecology. 43. doi:10.20417/nzjecol.43.2.
  65. ^"Evaluating the use of 1080 : Predators, poisons and silent forests"(PDF). Retrieved 2017-04-18.
  66. ^JC Mcilroy; DR King; AJ Oliver (1985). "The Sensitivity of Australian Animals to 1080 Poison VIII. Amphibians and Reptiles". Wildlife Research. 12: 113. doi:10.1071/wr9850113.
  67. ^McIlroy, J.C. 1992: Secondary poisoning hazards associated with 1080-treated carrot baiting campaigns against rabbits, 1992
  68. ^Perfect, A. J.; Bell, B. D. (2005). "Assessment of the impact of 1080 on the native frogs Leiopelma archeyi and L. hochstetteri"(PDF). DOC Research & Development Series. 209.
  69. ^"Predation of lizards by feral house cats (Felis catus) and ferrets (Mustela furo) in the tussock grassland of Otago". October 1995. Retrieved 2017-04-18.
  70. ^Conserving dryland lizards by reducing predator-mediated apparent competition and direct competition with introduced rabbits (Norbury, G. 2001 – Journal of Applied Ecology 38: 1350–1361):
  71. ^Possums and possum control; effects on lowland forest ecosystems – Atkinson et al, 1995:
  72. ^"Conservation publications: Science publications". 2006-08-03. Retrieved 2017-04-18.
  73. ^Spurr, E. B. (1996). "Impacts of 1080-poisoning for possum control on non-target invertebrates"(PDF). New Zealand: Department of Conservation.
  74. ^Booth, L. H.; Wickstrom, M. L. (1999). "The Toxicity of Sodium Monofluoroacetate (1080) to Huneria striata, a New Zealand Native Ant"(PDF). New Zealand Journal of Ecology. 23 (2): 161–165.
  75. ^Eason, C. T.; Gooneratne, R.; Wright, G.; Pierce, R.; Frampton, C. M. (1993). "The fate of sodium monofluoroacetate (1080) in water, mammals, and invertebrates". Proceedings of 46th New Zealand Plant Protection Society Conference. pp. 297–301.
  76. ^"Methods of pest control: Animal pests". 2006-08-01. Retrieved 2017-04-18.
  77. ^"Insects and Spiders of New Zealand/Aotearoa". Archived from the original on 2011-08-10. Retrieved 2011-08-24.
  78. ^Cowan, P. E.; Moeed, A. (1987). "Invertebrates in the diet of brushtail possums, Trichosurus vulpecula, in lowland podocarp/broadleaf forest, Orongorongo Valley, Wellington, New Zealand". New Zealand Journal of Zoology. 14 (2): 163–177. doi:10.1080/03014223.1987.10422987. ISSN 0301-4223.
  79. ^"4. – Possums – Te Ara Encyclopedia of New Zealand". Retrieved 2017-04-18.

Further reading[edit]

External links[edit]

  1. Yamaha waverunner dealers in nc
  2. 1 corinthians 16 22 kjv
  3. Social security enter reset code

FOXOFF® 1080 Fox Baits

FOXOFF® is available in the traditional 60g bait and also a smaller 35g bait known as FOXOFF® Econobait. Both bait sizes contain the same amount of 1080 (3mg).

Download: FOXOFF Product Brochure
Download: FOXOFF Product Label
Download: FOXOFF Econobait Product Label

FOXOFF® is a manufactured bait, pre-poisoned with precisely 3 milligrams (3/1000th of a gram) of sodium fluoroacetate (1080 poison). FOXOFF® is shelf-stable without refrigeration to allow thorough control programs over 2-4 weeks. They are highly specific for canids and are not readily taken by native animals or stock.

A single FOXOFF® bait is lethal to the largest fox.

60g FOXOFF® baits are available in ‘farmpacks’ of 72 (6 trays of 12) or boxes containing 4 farmpacks (288 baits).

35g FOXOFF® Econobaits are available as individually made baits in a range of new plastic pails with resealable lids. Sizes include 10, 20, 40, 100, and 200 bait pails. 35g FOXOFF® Econobaits are also available in farmpacks’ of 120 (4 trays of 30).

FOXOFF® Free-Feed non-toxic baits are also available in the tradtional 60g size and also in the Econobait 35g size.

How do I purchase this product?

For all ACTA products, the most efficient way to purchase what you need is to contact your local rural merchant store and ask for our products - our main distributors are listed here.

For products that contain 1080 or PAPP, regulations vary between States & Territories.

If you are in NSW, contact your regional Local Land Services (LLS).
If you are in South Australia, contact you regional Natural Resource Management Board.

All other areas should be able to access products directly from your local rural merchant store.

Contact us for more information if required and we can advise you on the best way forward.

What You MUST Know About Compound Crypto

Me: Hurry up, my dear. Do you see, darling, how his cock trembles impatiently. WIFE (getting out from the table, pulling off her panties and sitting on. The penis with his back to the man): You will persuade a dead woman too.

Compound can you 1080 buy

Yes, and Aunt Natasha is also a good bird. As soon as the leader of the red and red-skinned, who was put forward from the morning to the usual shack, here at once the room. Of Aunt Nasha became me temporary for the eternal The loving getera had time to run through her camp from five to eight functional hahales and by the time of Chingachguk's arrival, she had time to bring the order.

Compound(COMP) , why it skyrocketed, and why you need to be careful

But now, at least he will live like a human. Then I'll send it back. And the second half is enough for me to implement some crazy idea.

Similar news:

I looked with completely different eyes at the woman walking in front of me. And in fact she was not even anything of herself. Again, I am terribly, unbearably wanted her.

838 839 840 841 842